3.11.63 \(\int \frac {x^{7/2}}{a+b x^2+c x^4} \, dx\) [1063]

3.11.63.1 Optimal result
3.11.63.2 Mathematica [C] (verified)
3.11.63.3 Rubi [A] (verified)
3.11.63.4 Maple [C] (verified)
3.11.63.5 Fricas [B] (verification not implemented)
3.11.63.6 Sympy [F(-1)]
3.11.63.7 Maxima [F]
3.11.63.8 Giac [F]
3.11.63.9 Mupad [B] (verification not implemented)

3.11.63.1 Optimal result

Integrand size = 20, antiderivative size = 385 \[ \int \frac {x^{7/2}}{a+b x^2+c x^4} \, dx=\frac {2 \sqrt {x}}{c}+\frac {\left (b+\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b-\sqrt {b^2-4 a c}}}\right )}{\sqrt [4]{2} c^{5/4} \left (-b-\sqrt {b^2-4 a c}\right )^{3/4}}+\frac {\left (b-\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b+\sqrt {b^2-4 a c}}}\right )}{\sqrt [4]{2} c^{5/4} \left (-b+\sqrt {b^2-4 a c}\right )^{3/4}}+\frac {\left (b+\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}\right ) \text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b-\sqrt {b^2-4 a c}}}\right )}{\sqrt [4]{2} c^{5/4} \left (-b-\sqrt {b^2-4 a c}\right )^{3/4}}+\frac {\left (b-\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}\right ) \text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b+\sqrt {b^2-4 a c}}}\right )}{\sqrt [4]{2} c^{5/4} \left (-b+\sqrt {b^2-4 a c}\right )^{3/4}} \]

output
1/2*arctan(2^(1/4)*c^(1/4)*x^(1/2)/(-b-(-4*a*c+b^2)^(1/2))^(1/4))*(b+(-2*a 
*c+b^2)/(-4*a*c+b^2)^(1/2))*2^(3/4)/c^(5/4)/(-b-(-4*a*c+b^2)^(1/2))^(3/4)+ 
1/2*arctanh(2^(1/4)*c^(1/4)*x^(1/2)/(-b-(-4*a*c+b^2)^(1/2))^(1/4))*(b+(-2* 
a*c+b^2)/(-4*a*c+b^2)^(1/2))*2^(3/4)/c^(5/4)/(-b-(-4*a*c+b^2)^(1/2))^(3/4) 
+1/2*arctan(2^(1/4)*c^(1/4)*x^(1/2)/(-b+(-4*a*c+b^2)^(1/2))^(1/4))*(b+(2*a 
*c-b^2)/(-4*a*c+b^2)^(1/2))*2^(3/4)/c^(5/4)/(-b+(-4*a*c+b^2)^(1/2))^(3/4)+ 
1/2*arctanh(2^(1/4)*c^(1/4)*x^(1/2)/(-b+(-4*a*c+b^2)^(1/2))^(1/4))*(b+(2*a 
*c-b^2)/(-4*a*c+b^2)^(1/2))*2^(3/4)/c^(5/4)/(-b+(-4*a*c+b^2)^(1/2))^(3/4)+ 
2*x^(1/2)/c
 
3.11.63.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 0.06 (sec) , antiderivative size = 80, normalized size of antiderivative = 0.21 \[ \int \frac {x^{7/2}}{a+b x^2+c x^4} \, dx=-\frac {-4 \sqrt {x}+\text {RootSum}\left [a+b \text {$\#$1}^4+c \text {$\#$1}^8\&,\frac {a \log \left (\sqrt {x}-\text {$\#$1}\right )+b \log \left (\sqrt {x}-\text {$\#$1}\right ) \text {$\#$1}^4}{b \text {$\#$1}^3+2 c \text {$\#$1}^7}\&\right ]}{2 c} \]

input
Integrate[x^(7/2)/(a + b*x^2 + c*x^4),x]
 
output
-1/2*(-4*Sqrt[x] + RootSum[a + b*#1^4 + c*#1^8 & , (a*Log[Sqrt[x] - #1] + 
b*Log[Sqrt[x] - #1]*#1^4)/(b*#1^3 + 2*c*#1^7) & ])/c
 
3.11.63.3 Rubi [A] (verified)

Time = 0.53 (sec) , antiderivative size = 359, normalized size of antiderivative = 0.93, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.300, Rules used = {1435, 1703, 1752, 756, 218, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^{7/2}}{a+b x^2+c x^4} \, dx\)

\(\Big \downarrow \) 1435

\(\displaystyle 2 \int \frac {x^4}{c x^4+b x^2+a}d\sqrt {x}\)

\(\Big \downarrow \) 1703

\(\displaystyle 2 \left (\frac {\sqrt {x}}{c}-\frac {\int \frac {b x^2+a}{c x^4+b x^2+a}d\sqrt {x}}{c}\right )\)

\(\Big \downarrow \) 1752

\(\displaystyle 2 \left (\frac {\sqrt {x}}{c}-\frac {\frac {1}{2} \left (b-\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}\right ) \int \frac {1}{c x^2+\frac {1}{2} \left (b-\sqrt {b^2-4 a c}\right )}d\sqrt {x}+\frac {1}{2} \left (\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}+b\right ) \int \frac {1}{c x^2+\frac {1}{2} \left (b+\sqrt {b^2-4 a c}\right )}d\sqrt {x}}{c}\right )\)

\(\Big \downarrow \) 756

\(\displaystyle 2 \left (\frac {\sqrt {x}}{c}-\frac {\frac {1}{2} \left (\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}+b\right ) \left (-\frac {\int \frac {1}{\sqrt {-b-\sqrt {b^2-4 a c}}-\sqrt {2} \sqrt {c} x}d\sqrt {x}}{\sqrt {-\sqrt {b^2-4 a c}-b}}-\frac {\int \frac {1}{\sqrt {2} \sqrt {c} x+\sqrt {-b-\sqrt {b^2-4 a c}}}d\sqrt {x}}{\sqrt {-\sqrt {b^2-4 a c}-b}}\right )+\frac {1}{2} \left (b-\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}\right ) \left (-\frac {\int \frac {1}{\sqrt {\sqrt {b^2-4 a c}-b}-\sqrt {2} \sqrt {c} x}d\sqrt {x}}{\sqrt {\sqrt {b^2-4 a c}-b}}-\frac {\int \frac {1}{\sqrt {2} \sqrt {c} x+\sqrt {\sqrt {b^2-4 a c}-b}}d\sqrt {x}}{\sqrt {\sqrt {b^2-4 a c}-b}}\right )}{c}\right )\)

\(\Big \downarrow \) 218

\(\displaystyle 2 \left (\frac {\sqrt {x}}{c}-\frac {\frac {1}{2} \left (\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}+b\right ) \left (-\frac {\int \frac {1}{\sqrt {-b-\sqrt {b^2-4 a c}}-\sqrt {2} \sqrt {c} x}d\sqrt {x}}{\sqrt {-\sqrt {b^2-4 a c}-b}}-\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-\sqrt {b^2-4 a c}-b}}\right )}{\sqrt [4]{2} \sqrt [4]{c} \left (-\sqrt {b^2-4 a c}-b\right )^{3/4}}\right )+\frac {1}{2} \left (b-\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}\right ) \left (-\frac {\int \frac {1}{\sqrt {\sqrt {b^2-4 a c}-b}-\sqrt {2} \sqrt {c} x}d\sqrt {x}}{\sqrt {\sqrt {b^2-4 a c}-b}}-\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{\sqrt {b^2-4 a c}-b}}\right )}{\sqrt [4]{2} \sqrt [4]{c} \left (\sqrt {b^2-4 a c}-b\right )^{3/4}}\right )}{c}\right )\)

\(\Big \downarrow \) 221

\(\displaystyle 2 \left (\frac {\sqrt {x}}{c}-\frac {\frac {1}{2} \left (\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}+b\right ) \left (-\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-\sqrt {b^2-4 a c}-b}}\right )}{\sqrt [4]{2} \sqrt [4]{c} \left (-\sqrt {b^2-4 a c}-b\right )^{3/4}}-\frac {\text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-\sqrt {b^2-4 a c}-b}}\right )}{\sqrt [4]{2} \sqrt [4]{c} \left (-\sqrt {b^2-4 a c}-b\right )^{3/4}}\right )+\frac {1}{2} \left (b-\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}\right ) \left (-\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{\sqrt {b^2-4 a c}-b}}\right )}{\sqrt [4]{2} \sqrt [4]{c} \left (\sqrt {b^2-4 a c}-b\right )^{3/4}}-\frac {\text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{\sqrt {b^2-4 a c}-b}}\right )}{\sqrt [4]{2} \sqrt [4]{c} \left (\sqrt {b^2-4 a c}-b\right )^{3/4}}\right )}{c}\right )\)

input
Int[x^(7/2)/(a + b*x^2 + c*x^4),x]
 
output
2*(Sqrt[x]/c - (((b + (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*(-(ArcTan[(2^(1/4)* 
c^(1/4)*Sqrt[x])/(-b - Sqrt[b^2 - 4*a*c])^(1/4)]/(2^(1/4)*c^(1/4)*(-b - Sq 
rt[b^2 - 4*a*c])^(3/4))) - ArcTanh[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b - Sqrt[b^ 
2 - 4*a*c])^(1/4)]/(2^(1/4)*c^(1/4)*(-b - Sqrt[b^2 - 4*a*c])^(3/4))))/2 + 
((b - (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*(-(ArcTan[(2^(1/4)*c^(1/4)*Sqrt[x]) 
/(-b + Sqrt[b^2 - 4*a*c])^(1/4)]/(2^(1/4)*c^(1/4)*(-b + Sqrt[b^2 - 4*a*c]) 
^(3/4))) - ArcTanh[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b + Sqrt[b^2 - 4*a*c])^(1/4 
)]/(2^(1/4)*c^(1/4)*(-b + Sqrt[b^2 - 4*a*c])^(3/4))))/2)/c)
 

3.11.63.3.1 Defintions of rubi rules used

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 756
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2 
]], s = Denominator[Rt[-a/b, 2]]}, Simp[r/(2*a)   Int[1/(r - s*x^2), x], x] 
 + Simp[r/(2*a)   Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !GtQ[a 
/b, 0]
 

rule 1435
Int[((d_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] 
:> With[{k = Denominator[m]}, Simp[k/d   Subst[Int[x^(k*(m + 1) - 1)*(a + b 
*(x^(2*k)/d^2) + c*(x^(4*k)/d^4))^p, x], x, (d*x)^(1/k)], x]] /; FreeQ[{a, 
b, c, d, p}, x] && NeQ[b^2 - 4*a*c, 0] && FractionQ[m] && IntegerQ[p]
 

rule 1703
Int[((d_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x 
_Symbol] :> Simp[d^(2*n - 1)*(d*x)^(m - 2*n + 1)*((a + b*x^n + c*x^(2*n))^( 
p + 1)/(c*(m + 2*n*p + 1))), x] - Simp[d^(2*n)/(c*(m + 2*n*p + 1))   Int[(d 
*x)^(m - 2*n)*Simp[a*(m - 2*n + 1) + b*(m + n*(p - 1) + 1)*x^n, x]*(a + b*x 
^n + c*x^(2*n))^p, x], x] /; FreeQ[{a, b, c, d, p}, x] && EqQ[n2, 2*n] && N 
eQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && GtQ[m, 2*n - 1] && NeQ[m + 2*n*p + 1, 0 
] && IntegerQ[p]
 

rule 1752
Int[((d_) + (e_.)*(x_)^(n_))/((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_)), x 
_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(e/2 + (2*c*d - b*e)/(2*q)) 
   Int[1/(b/2 - q/2 + c*x^n), x], x] + Simp[(e/2 - (2*c*d - b*e)/(2*q))   I 
nt[1/(b/2 + q/2 + c*x^n), x], x]] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[n2 
, 2*n] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && (PosQ[b^2 
 - 4*a*c] ||  !IGtQ[n/2, 0])
 
3.11.63.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.08 (sec) , antiderivative size = 61, normalized size of antiderivative = 0.16

method result size
risch \(\frac {2 \sqrt {x}}{c}-\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{8}+\textit {\_Z}^{4} b +a \right )}{\sum }\frac {\left (\textit {\_R}^{4} b +a \right ) \ln \left (\sqrt {x}-\textit {\_R} \right )}{2 \textit {\_R}^{7} c +\textit {\_R}^{3} b}}{2 c}\) \(61\)
derivativedivides \(\frac {2 \sqrt {x}}{c}+\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{8}+\textit {\_Z}^{4} b +a \right )}{\sum }\frac {\left (-\textit {\_R}^{4} b -a \right ) \ln \left (\sqrt {x}-\textit {\_R} \right )}{2 \textit {\_R}^{7} c +\textit {\_R}^{3} b}}{2 c}\) \(64\)
default \(\frac {2 \sqrt {x}}{c}+\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{8}+\textit {\_Z}^{4} b +a \right )}{\sum }\frac {\left (-\textit {\_R}^{4} b -a \right ) \ln \left (\sqrt {x}-\textit {\_R} \right )}{2 \textit {\_R}^{7} c +\textit {\_R}^{3} b}}{2 c}\) \(64\)

input
int(x^(7/2)/(c*x^4+b*x^2+a),x,method=_RETURNVERBOSE)
 
output
2*x^(1/2)/c-1/2/c*sum((_R^4*b+a)/(2*_R^7*c+_R^3*b)*ln(x^(1/2)-_R),_R=RootO 
f(_Z^8*c+_Z^4*b+a))
 
3.11.63.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 4023 vs. \(2 (307) = 614\).

Time = 0.46 (sec) , antiderivative size = 4023, normalized size of antiderivative = 10.45 \[ \int \frac {x^{7/2}}{a+b x^2+c x^4} \, dx=\text {Too large to display} \]

input
integrate(x^(7/2)/(c*x^4+b*x^2+a),x, algorithm="fricas")
 
output
1/2*(c*sqrt(sqrt(1/2)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 + (b^4*c^5 - 8* 
a*b^2*c^6 + 16*a^2*c^7)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2 
*c^3 + a^4*c^4)/(b^6*c^10 - 12*a*b^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13) 
))/(b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)))*log(2*(a*b^4 - 3*a^2*b^2*c + a^3 
*c^2)*sqrt(x) + (b^6 - 7*a*b^4*c + 13*a^2*b^2*c^2 - 4*a^3*c^3 - (b^5*c^5 - 
 8*a*b^3*c^6 + 16*a^2*b*c^7)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^ 
3*b^2*c^3 + a^4*c^4)/(b^6*c^10 - 12*a*b^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3* 
c^13)))*sqrt(sqrt(1/2)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 + (b^4*c^5 - 8 
*a*b^2*c^6 + 16*a^2*c^7)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^ 
2*c^3 + a^4*c^4)/(b^6*c^10 - 12*a*b^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13 
)))/(b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)))) - c*sqrt(sqrt(1/2)*sqrt(-(b^5 
- 5*a*b^3*c + 5*a^2*b*c^2 + (b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)*sqrt((b^8 
 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(b^6*c^10 - 12*a* 
b^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)))/(b^4*c^5 - 8*a*b^2*c^6 + 16*a^ 
2*c^7)))*log(2*(a*b^4 - 3*a^2*b^2*c + a^3*c^2)*sqrt(x) - (b^6 - 7*a*b^4*c 
+ 13*a^2*b^2*c^2 - 4*a^3*c^3 - (b^5*c^5 - 8*a*b^3*c^6 + 16*a^2*b*c^7)*sqrt 
((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(b^6*c^10 - 
12*a*b^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)))*sqrt(sqrt(1/2)*sqrt(-(b^5 
 - 5*a*b^3*c + 5*a^2*b*c^2 + (b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)*sqrt((b^ 
8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(b^6*c^10 - 1...
 
3.11.63.6 Sympy [F(-1)]

Timed out. \[ \int \frac {x^{7/2}}{a+b x^2+c x^4} \, dx=\text {Timed out} \]

input
integrate(x**(7/2)/(c*x**4+b*x**2+a),x)
 
output
Timed out
 
3.11.63.7 Maxima [F]

\[ \int \frac {x^{7/2}}{a+b x^2+c x^4} \, dx=\int { \frac {x^{\frac {7}{2}}}{c x^{4} + b x^{2} + a} \,d x } \]

input
integrate(x^(7/2)/(c*x^4+b*x^2+a),x, algorithm="maxima")
 
output
integrate(x^(7/2)/(c*x^4 + b*x^2 + a), x)
 
3.11.63.8 Giac [F]

\[ \int \frac {x^{7/2}}{a+b x^2+c x^4} \, dx=\int { \frac {x^{\frac {7}{2}}}{c x^{4} + b x^{2} + a} \,d x } \]

input
integrate(x^(7/2)/(c*x^4+b*x^2+a),x, algorithm="giac")
 
output
integrate(x^(7/2)/(c*x^4 + b*x^2 + a), x)
 
3.11.63.9 Mupad [B] (verification not implemented)

Time = 15.55 (sec) , antiderivative size = 10449, normalized size of antiderivative = 27.14 \[ \int \frac {x^{7/2}}{a+b x^2+c x^4} \, dx=\text {Too large to display} \]

input
int(x^(7/2)/(a + b*x^2 + c*x^4),x)
 
output
atan(((((512*(a^3*b^6 - 4*a^6*c^3 - 7*a^4*b^4*c + 13*a^5*b^2*c^2))/c - (25 
6*x^(1/2)*(-(b^9 + b^4*(-(4*a*c - b^2)^5)^(1/2) + 80*a^4*b*c^4 + 61*a^2*b^ 
5*c^2 - 120*a^3*b^3*c^3 + a^2*c^2*(-(4*a*c - b^2)^5)^(1/2) - 13*a*b^7*c - 
3*a*b^2*c*(-(4*a*c - b^2)^5)^(1/2))/(32*(256*a^4*c^9 + b^8*c^5 - 16*a*b^6* 
c^6 + 96*a^2*b^4*c^7 - 256*a^3*b^2*c^8)))^(3/4)*(256*a^5*b*c^6 + 16*a^3*b^ 
5*c^4 - 128*a^4*b^3*c^5))/c)*(-(b^9 + b^4*(-(4*a*c - b^2)^5)^(1/2) + 80*a^ 
4*b*c^4 + 61*a^2*b^5*c^2 - 120*a^3*b^3*c^3 + a^2*c^2*(-(4*a*c - b^2)^5)^(1 
/2) - 13*a*b^7*c - 3*a*b^2*c*(-(4*a*c - b^2)^5)^(1/2))/(32*(256*a^4*c^9 + 
b^8*c^5 - 16*a*b^6*c^6 + 96*a^2*b^4*c^7 - 256*a^3*b^2*c^8)))^(1/4) - (256* 
x^(1/2)*(a^4*b^4 + 2*a^6*c^2 - 4*a^5*b^2*c))/c)*(-(b^9 + b^4*(-(4*a*c - b^ 
2)^5)^(1/2) + 80*a^4*b*c^4 + 61*a^2*b^5*c^2 - 120*a^3*b^3*c^3 + a^2*c^2*(- 
(4*a*c - b^2)^5)^(1/2) - 13*a*b^7*c - 3*a*b^2*c*(-(4*a*c - b^2)^5)^(1/2))/ 
(32*(256*a^4*c^9 + b^8*c^5 - 16*a*b^6*c^6 + 96*a^2*b^4*c^7 - 256*a^3*b^2*c 
^8)))^(1/4)*1i - (((512*(a^3*b^6 - 4*a^6*c^3 - 7*a^4*b^4*c + 13*a^5*b^2*c^ 
2))/c + (256*x^(1/2)*(-(b^9 + b^4*(-(4*a*c - b^2)^5)^(1/2) + 80*a^4*b*c^4 
+ 61*a^2*b^5*c^2 - 120*a^3*b^3*c^3 + a^2*c^2*(-(4*a*c - b^2)^5)^(1/2) - 13 
*a*b^7*c - 3*a*b^2*c*(-(4*a*c - b^2)^5)^(1/2))/(32*(256*a^4*c^9 + b^8*c^5 
- 16*a*b^6*c^6 + 96*a^2*b^4*c^7 - 256*a^3*b^2*c^8)))^(3/4)*(256*a^5*b*c^6 
+ 16*a^3*b^5*c^4 - 128*a^4*b^3*c^5))/c)*(-(b^9 + b^4*(-(4*a*c - b^2)^5)^(1 
/2) + 80*a^4*b*c^4 + 61*a^2*b^5*c^2 - 120*a^3*b^3*c^3 + a^2*c^2*(-(4*a*...